
Vacuum boundary conditions for helicon waves in a cylindrical plasma

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1969 J. Phys. A: Gen. Phys. 2 717

(http://iopscience.iop.org/0022-3689/2/6/013)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:39

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3689/2/6
http://iopscience.iop.org/0022-3689
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


LETTERS TO THE EDITOR 

J .  P H Y Y .  A ( G E N .  PHYS.), 1969,  S E R .  2, V O L .  2 .  P R I N T E D  I N  G R E A T  B R I T A I N  

Vacuum boundary conditions for helicon waves 
in a cylindrical plasma 

Abstract. We consider helicon propagation in a cylindrical resistive plasma with 
vacuum boundary conditions. We show that the wave fields (which we assume to be 
continuous at the boundary) develop rapid variations as 7 -+ 0, which can be represented 
physically by surface currents and a surface dipole layer. The contribution of the 
dipole layer to ?Z , [ E ]  clears up a difficulty in a recent paper by Francey and Gates in 
1968. 

In  a recent paper (Francey and Gates 1968, to be referred to as FG) the theory of 
helicon waves in a non-resistive cylindrical plasma with vacuum boundaries is considered. 
The authors derive a new boundary condition (FG, equation (3.7)), which enables them 
to solve for the dispersion relation, The  same problem has also been investigated by 
Klozenberg et al. (1965, to be referred to as KMT) by solving the equations for finite 
resistivity 7 and then taking the limit 7 +O. Comparing the two approaches (for the 
nz = 0 mode), we see three disagreements: 

(i) The dispersion relation obtained by KMT includes an imaginary term which gives 
finite damping due to surface currents. 

(ii) The tangential components b,, b, are both discontinuous at the plasma surface in 
the treatment of KRIT; FG obtain the result that b, is continuous and be discontinuous. 

(iii) FG conclude (4th line, p. 713) that the surface currents are zero, which together 
with the equation 

n x [b] = - j *  (1) 
47 
c 

implies that b,  should be continuous in their solution. In fact, this is not the case, indicating 
an internal inconsistency in their work. 

I t  is not difficult to resolve these differences, and we shall show how this is done. From 
F G  (equation (3.2)) we have (note that we change all units into Gaussian c.g.s.) 

rpec 
[ = -  

Bo 
and we want to take the limit 7 + O ,  looking for surface currents. Hence we need the 
expressions for E ,  and these may be obtained from the field equation (FG, equation (2.3)) 

1 
iiec 

E = - j x B + q j .  

Of course, this is the inverse of equation (Z), but this indirect treatment turns out to shed 
some light on the physical phenomena which take place at the boundary. Now K M T  show 
that b (in the plasma) is the sum of two solutions, each of which satisfy the equation 

x b = pb, where 

iv$12-Q2kp+o ( - YZZ) = O 

m mc 
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(3) 
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For 77 -+ 0 one of the two solutions of equation (3) becomes infinite, and it is the correspond- 
ing b field which gives the surface effects. Evaluating all components of both E and b for 
this 'surface' term, we have 

b, N 0 

b, N - i exp(&k(r - U ) )  

6 ,  N exp(O&(r-u)}. 

E, N - u2 wok QT 
exp{ &k(r - U ) )  

C 
(4) 

ia2w,k 
E,N  -- exp(Rd(r - a)}. , 

C 

I n  the following discussion it is essential to remember that, although the amplitudes of 
these terms have to be determined by the solution of the boundary value problem, the 
relative amplitudes of the six quantities are fixed by equation (4). Now KMT show that the 
amplitude of the discontinuities in be and b, remain finite as 77 -+ 0; hence we draw two 
conclusions about the amplitude of the components of E :  

(i) The  tangential components have a finite discontinuity as 7 --f 0. 
(ii) E ,  becomes a delta function in this limit. 

We define the surface current j *  by 

j *  = lim 1' j ( r )  dr 
n + O ,  6+0 a - 6  

and use equations (2) and (4) to evaluate this quantity. We obtain 

ic 
j,* N - - 

47r 

It is easy to check that equation (1) is satisfied with this surface current and the discontin- 
uities in b given above. 

Referring again to FG, we see that the error in their argument comes in the use of 
equation (3.2). The  term @?x E cannot be neglected, since E ,  becomes infinite at the surface 
and gives a finite contribution to an integral normal to the surface. It cannot be argued that 
because E,  is zero inside the plasma it is zero in equation (2), since it is discontinuous at the 
surface. Physically both of these phenomena can be described by the introduction of a 
dipole layer at the surface, as suggested by Woods (1962, 1964). From equation (4) the 
density of this dipole layer is given by 

u2wo 
T N  -- 

47rc 

and it is easily verified that the relation 

n x [ E ]  = 4 ~ n x V ~  
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is satisfied with the discontinuities of E given in equation (4). Further work is in progress to 
derive useful boundary conditions for use in the 7 = 0 limit. 

I wish to thank Dr. R. J. Hosking for a helpful discussion. 

School of Physical Sciences, 
The  Flinders University of South Australia, 
Bedford Park, 
South Australia. 

B. DAVIES 
12th iWay 1969 
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The hemispherical box: an example of virtual symmetry 

Abstract. An example of accidental degeneracy in quantum mechanics arising from 
virtual symmetry is exhibited and discussed. 

McIntosh (1964) has emphasized that a quantum-mechanical system may inherit 
a degeneracy through the symmetry of a larger system in which it can be embedded, 
We wish to report a pleasing example of this afforded by the motion of a single particle 
in a hemispherical box with impenetrable walls. The  method of embedding used was 
originated by Heisenberg (private communication to Professor C. A. Coulson), though it 
has apparently not been published by him. Previous applications have dealt mainly with 
Huckel molecular orbital calculations and the study of lattice vibrations, references to 
which may be found in the paper by McIntosh. The eigenvalue problem pertaining to 
the present system, though it is rather simple and could otherwise be solved by straight- 
forward methods, is of interest because of the manner in which it exhibits accidental 
degeneracy as we shall now describe. 

The  manifest symmetry group of the hemispherical box is C,,, which would imply 
at most a twofold degeneracy in the energy levels. The actual degeneracy is much higher. 
T o  show this we follow Heisenberg’s procedure as described by McIntosh and attempt 
to embed in a larger more symmetrical system, in this case the spherical box, so that out 
of a subset of the eigenfunctions of the latter we may construct the eigenfunctions of the 
original system. Now, although the extra symmetry of the larger system may imply 
additional degeneracy, the question still remains as to whether in the subset of eigen- 
functions of the smaller system the residual degeneracy is greater than mould otherwise 
have been anticipated. In  the present case this does occur. Indeed, since the symmetry 
group of the spherical box is SO(3, R), we first of all observe that each of its energy levels 
may be indexed with the angular quantum number 1 with a (2Z+l)-fold degeneracy. 
Then if we select those eigenfunctions which have a node on (say) the xy plane and apply 
to them the projection operator P defined by 


